文化有根 創意是伴 Bridging Creativity
《愛墾網》馬來西亞-台灣墾友於2014年7月23~26日,四天三夜遊走沙巴內陸市鎮丹南(Tenom)。最難忘的,除了陳明發博士、劉富威和張文傑三人的麓夢悠神秘巨石圖騰(Lumuyu Rock Carvings)探險外,要算是丹南—Halogilat鐵路之旅了。最難得的是,這次鐵路遊得到Ken李敬傑、李敬豪兄弟的安排,請到服務沙巴鐵路局34年的蘇少基先生前丹南火車站站長一道同遊。
Tags:
Albums: 《愛墾網》馬來西亞~台灣墾友同遊丹南
Location: 沙巴丹南,Tenom, Sabah
Comment
According to Donnell Jr. et al. (1989), these complaints of odours may well have heightened the perception of poor air quality by some employees in the building.
This, in turn, may have led to an epidemic anxiety state resulting in the SBS outbreak (Faust & Brilliant, 1981). In fact, workers suffering from SBS were more than twice as likely to have noticed a particular odour in the work area before the onset of their symptoms than those who were working in the same building who were unaffected by the outbreak.9
At the same time, however, it should also be borne in mind that our tendency to focus on what we see and hear means that we often exhibit olfactory anosmia to ambient scents (Forster & Spence, 2018). To give a sense of the potential scale of the problem, Woods (1989) estimated that 30–70 million people in the USA alone are exposed to offices that manifest SBS. As such, anything (and everything) that can be done to reduce the symptoms associated with this reaction to the indoor environment (Finnegan, Pickering, & Burge, 1984) will likely have a beneficial effect on the health and well-being of many people.
At the same time, however, it is perhaps also worth bearing in mind here that the incidence of SBS would seem to have declined in recent years (though see also Joshi, 2008; Magnavita, 2015; Redlich, Sparer, & Cullen, 1997), perhaps suggesting that building design/ventilation has improved as a result of the earlier outbreaks.10
That said, it is perhaps also worth noting that there continues to be some uncertainty as to whether the very real symptoms of SBS should be attributed to airborne pollutants, or may instead be better understood as a psychosomatic response to a particular environmental atmosphere (see Fletcher, 2005 and Love, 2018). What is more, there has been a move by some researchers to talk in terms of the less pejorative-sounding building-related symptoms (BRS) in stead (Niemelä, Seppänen, Korhonen, & Reijula, 2006).
One more psychological factor that may be relevant here concerns the feeling of a lack of control over one’s multisensory environment that many of those working in ventilated buildings where the windows cannot be opened manually have may indeed play a role in the elicitation of SBS. Scent and the city: designing fragrant spaces There are, however, signs that the situation is slowly starting to change with regards to the emphasis placed on olfaction in both architectural and urban design prac tice.
For instance, a number of commentators have noted, not to mention sometimes been puzzled by, the distinctive, yet unexplained, pleasant- and hence, one assumes, deliberately introduced- fragrances that some new constructions appear to have. Just take the case of the Barclays Center arena in Brooklyn, NY, home of the Brooklyn Nets, as a case in point.
9. It is also worth noting how suggestible people can be concerning the presence of an odour, as first demonstrated by Slosson’s(1899) classic classroom demonstration of students in the lecture theatre detecting a fictitious odour in the air.
10. It has also been suggested that the energy crisis in the 1970s may also have been partly to blame, as that tended to result in lower ventilation standards.
Brooklyn Nets, as a case in point. On its opening in 2013, various commentators in the press drew attention to the distinctive, if not immediately identifiable, scent that appeared to pervade the space, and which appeared to have been added deliberately- almost as if it were intended to be a signature scent for the space (e.g., Al brecht, 2013; Doll, 2013; Martinez, 2013).
That said, the idea of fragrancing public spaces dates back at least as far as 1913. In that year, at the opening of the Marmor haus cinema in Berlin, the fragrance of Marguerite Carré, a perfume by Bourjois, Paris, was deliberately (and innovatively, at least for the time) wafted through the auditorium (Berg-Ganschow & Jacobsen, 1987). Meanwhile, in what may well be a sign of things to come, synaesthetic perfumer Dawn Goldsworthy and her scent design company 12:29 recently made the press after apparently creating a bespoke scent for a new US$40 million apartment in Miami (Schroeder, 2018). What further opportunities might there be to design distinctive “signature” scents for spaces/buildings, one might ask (Henshaw et al., 2018; Jones, 2006; Trivedi, 2006)?
Evidence that the olfactory element of design can be used to affect behaviour change positively includes, for example, the observation that people tend to engage in more cleaning behaviours when there is a hint of citrus in the air (De Lange, Debets, Ruitenburg, & Holland, 2012; Holland, Hendriks, & Aarts, 2005). In the future, it may not be too much of a stretch to imagine public spaces filled with aromatic flowers and blossoming trees, introduced with the aim of helping to discourage people from littering, and who knows, perhaps even reducing vandalism (see also Steinwald, Harding, & Piacentini, 2014).
In terms of the cognitive mechanism underlying such crossmodal effects of scent on behaviour, the suggestion, at least in the citrus cleaning example just mentioned, is that smelling an ambient scent that we associate with clean and cleaning then activates, or primes, the associated concepts (Smeets & Dijksterhuis, 2014). Having been primed, the suggestion is thus that this makes it that bit more likely that we will engage in behaviours that are congruent or consistent with the primed concept (though see Doyen, Klein, Pichon, & Cleeremans, 2012).
Elsewhere, researchers have already demonstrated the beneficial effects that lavender, and other scents normally associated with aromatherapy, have on those who are ex posed to them. So, for instance, the latter tend to show re duced stress, better sleep, and even enhanced recovery from illness (see Herz, 2009; Spence, 2003, for reviews; though see also Haehner, Maass, Croy, & Hummel, 2017). According to one commentator writing in The New York Times: “While these findings have obvious implications for health care, the opportunities for architecture and urban planning are particularly intriguing. Designers are trained to focus mostly on the visual, but the science of design could significantly expand designers’ sensory palette.
Call it medicinal urbanism.” (Hosey, 2013). Effects on people’s mood resulting from exposure to ambient scent have been reported in some by no means all studies (Glass &Heuberger, 2016; Glass, Lingg, & Heuberger, 2014; Haehner et al., 2017;Weber&Heuberger, 2008). It re mains somewhat uncertain though whether the beneficial effects of aromatherapy scents can be explained by prim ing effects, based on associative learning, as in the case of the clean citrus scents mentioned above (see Herz, 2009), versus via a more direct (i.e., less cognitively mediated) physiological route (cf. Harada, Kashiwadani, Kanmura, & Kuwaki, 2018).
The olfactory scentscapes, and scent maps of cities, that have been discussed by various researchers (see Fig. 6) have also helped to draw people’s attention to the often rich olfactory landscapes offered by many urban spaces (e.g., https://sensorymaps.com/; Bucknell, 2018; Henshaw, 2014; Henshaw et al., 2018; Lipps, 2018; Lupton & Lipps, 2018; Margolies, 2006).
The notion of the healing garden has also seen something of a resurgence in recent years, and the benefits now, as historically, are likely to revolve, at least in part, around the healing, or restorative effect of the smell of flowers and plants (e.g., Pearson, 1991; see also Ottoson & Grahn, 2005). One building that is often mentioned in this regard, namely in terms of its olfactory design credentials, is the Silicon House by architects, SelgasCano, situated on the outskirts of Madrid (https://www.archi tectmagazine.com/project-gallery/silicon-house-6143).
This house is set in what has been described as “a garden of smells”, which emphasize the olfactory, while also stressing the tactile elements of the design. Hence, while the olfactory aspects of architectural design practice have long been ignored, there are at least signs of a revival of interest in stimulating this sense through both architectural and urban design practice.
Architectural taste The British writer and artist Adrian Stokes once wrote of the “oral invitation of Veronese marble” (Stokes, 1978, p. 316). And while I must admit that I have never felt the urge to lick a brick, Pallasmaa (1996, p. 59) vividly recounts the urge that he once experienced to explore /connect with architecture using his tongue. He writes that: “Many years ago when visiting the DL James Residence in Carmel, California, designed by Charles and Henry Greene, I felt compelled to kneel and touch the delicately shining white marble threshold of the front door with my tongue.
The sensuous materials and skilfully crafted details of Carlo Scarpa’s architecture as well as the sensuous colours of Luis Barragan’s houses frequently evoke oral experiences. Deliciously coloured surfaces of stucco lustro, a highly polished colour or wood surfaces also present themselves to the appreci ation of the tongue.”
Perhaps aware of many readers’ presumed scepticism on the theme of the gustatory contribution to architecture,11 Pallasmaa writes elsewhere that: “The suggestions that the sense of taste would have a role in the appreciation of architecture may sound preposterous. However, polished and coloured stone as well as colours in general, and finely crafted wood details, for instance, often evoke an awareness of mouth and taste. Carlo Scarpa’s architectural details frequently evoke sensation of taste.” (Pallasmaa, 2011, p. 595).
The suggestion here that “colours in general … often evoke … [a] taste” seemingly linking to the widespread literature on the crossmodal 11. Indeed, one might wonder whether the latter quote refers more to oral stereoagnosis (Jacobs, Serhal, & van Steenberghe, 1998), than specifically to gustation (see also Waterman Jr., 1917, for the suggestion that the tongue can be more revealing than the hand). correspondences that have increasingly been docu mented between colour and basic tastes (see Spence et al., 2015, for a review).
However, rather than describ ing this in terms of architecture that one can taste, one might more fruitfully refer to the growing literature on crossmodal correspondences instead (see below for more on this theme). When, in his book Architecture and the brain, Eber hard (2007, p. 47) talks about what the sense of taste has to do with architecture, he suggests that: “You may not literally taste the materials in a building, but the design of a restaurant can have an impact on your ‘conditioned response’ to the taste of the food.” Environmental multi sensory effects on tasting is undoubtedly an area that has grown markedly in interest in recent years (e.g., see Spence, 2020c, for a review).
It is though worth noting that just as for the olfactory case, some atmospheric ef fects on tasting may be more cognitively-mediated (e.g., associated with the priming of notions of luxury/ex pense, or lack thereof) while others may be more direct, as when changing the colour (see Oberfeld, Hecht, Allendorf, & Wickelmaier, 2009; Spence, Velasco, & Knoeferle, 2014; Torrico et al., 2020) or brightness (Gal et al., 2007; Xu & LaBroo, 2014) of the ambient lightingchanges taste/flavour perception. “An architecture of the seven senses”? So far in this section, we have briefly reviewed the uni sensory contributions of architectural design organized around each of the five main senses (vision audition, touch, smell, and taste).
However, seemingly not content with the traditional five, Pallasmaa (1994) goes further in the title of one of his early articles entitled “An architec ture of the seven senses.” While the text itself is not altogether clear, or explicit, on this point, the skeleton and muscles would appear to be the extra senses that Pallasmaa has in mind here. Indeed, the embodied re sponse of people to architecture is definitely something that has captured the imagination, not to mention in trigued, a number of architectural theorists in recent years (e.g., see Bloomer & Moore, 1977; Pallasmaa, 2011; Pérez-Gómez, 2016). The vestibular sense is also worthy of mention here (see Gulden & Grüsser, 1998; Indovina et al., 2005). Anyone who has tried out one of the VR simulations of walking along the outside ledge of a tall building will have had the feeling of vertigo.
Indeed, those who take up the challenge of designing for the multisensory mind might well take a tip from one commentator, writing in Adver tising Age when talking about product innovation who suggested that: “… the most successful new products ap peal on both rational and emotional levels to as many senses as possible.” (Neff, 2000, p. 22).
Architectural de sign practice, I suggest, would be well-advised to strive for much the same in order to optimally stimulate the multisensory mind. Although not the primary interest of the present re view, it is perhaps also worth noting in passing, how a very similar debate on the importance of designing for the non-visual senses has been playing out amongst those interested specifically in landscape design/architec ture (Lynch & Hack, 1984; Mahvash, 2007; Treib, 1995).
The garden is a multisensory space and as Mark Treib wrote once in an essay entitled “Must landscape mean?”: “Today might be a good time to once more examine the garden in relation to the senses.” Designing for the multisensory mind: architectural design for all the senses The architect must act as a composer that orches trates space into a synchronization for function and beauty through the senses– and how the human body engages space is of prime importance.
As the human body moves, sees, smells, touches, hears and even tastes within a space– the architecture comes to life. The rhythm of an architecture can be felt by occu pants as a result of the architect’s composition– or arrangement of all the sensorial qualities of space. By arranging spatial sensorial features, an architect can lead occupants through the functional and aes thetic rhythms of a created place. Architectural building for all the senses can serve to move occu pants– elevating their experience. (quote from a blogpost by Lehman, 2009).
One of the most exciting developments in cognitive neuroscience in recent decades has been the growing realization that perception/experience is far more multi sensory than anyone had realized (e.g., Bruno & Pavani, 2018; Calvert et al., 2004; Levent & Pascual-Leone, 2014; Stein, 2012). That is, what we hear and smell, and what we think about the experience, is often influenced by what we see, and vice versa (Calvert et al., 2004; Stein, 2012). The senses talk to, and hence influence, one an other all the time, though we often remain unaware of these cross-sensory interactions and influences.
In fact, wherever neuroscientists look in the human brain, activity appears to be modulated by what is going on in more than one sense, leading, increasingly, to talk of the mul tisensory mind (Ghazanfar & Schroeder, 2006; Talsma, 2015). The key question here must therefore be what implications this growing realization of the ubiquity of multisensory cross-talk has for the field of architectural design practice?
The problem is that, as yet, there has been relatively little research directed at the question of how atmospheric/environmental multisensory cues actually inter act. Mattila and Wirtz (2001, pp. 273–274) drew attention to this lacuna some years ago when writing that: “Past studies have examined the effects of individ ual pleasant stimuli such as music, color or scent on consumer behavior, but have failed to examine how these stimuli might interact.”
At the outset, when starting to consider the multisensory perception of architecture, it is worth noting that it is rarely something that we attend to. Indeed, as Benjamin (1968, p. 239) once noted: “Architecture has always represented the proto type of a work of art the reception of which is consum mated in a state of distraction.”
To the extent that such a view is correct, one can say that multisensory architec ture is rarely foregrounded in our attention/experience. Juhani Pallasma, meanwhile, has suggested that: “An architectural experience silences all external noise; it focuses attention on one’s very existence.” (Pallasmaa, 1994, p. 31).
Once again, the suggestion here would appear to be that attention is directed away from the building and toward the individual and their place in the world. Given that, on an everyday basis, architecture is typically not foregrounded in our attention/experience, one might legitimately wonder as to whether the multisensory integration of atmospheric/environmental cues takes place, given that they are so often unattended.
According to the laboratory research that has been published on this question to date, the evidence would appear to suggest that while the multisensory integration of unattended cues relating to an object or event certainly can occur, it is by no means guaranteed to do so (see Spence & Frings, 2020, for a review). Perhaps the more fundamental question here, though, is whether we need to attend to ambient/environmental sensory cues for them to influence us. However, the research that has been published to date would appear to suggest that very often environmental cues influence us even when we are not consciously aware of, or thinking about them.
One particularly striking example of this was reported by researchers who manipulated whether French or German music was played in a supermarket (North, et al., 1997, 1999). The results showed that the majority of the wine purchased was French when French music was played, with this reversing to a majority of German wines being sold when German music was played.
The even more striking aspect of these results was the fact that the majority of those interviewed after coming away from the tills denied that the background music had any influence over the choices they made. A number of studies have also shown that scents that we are unaware of, either because they are presented just below the perceptual threshold or because we have become functionally anosmic to their constant presence, can nevertheless still influence us (Li, Moallem, Paller, & Gottfried, 2007).
Similarly, there is also a suggestion that inaudible infrasound waves (i.e., < 20 Hz) may also affect people without their necessarily being aware of their presence (Weichenberger et al., 2017). Meanwhile, in terms of visual annoyance, it has been reported that flickering LED lights that look no different to the naked eye can nevertheless trigger a significantly greater number of headaches that non-flickering lights (e.g., see Wilkins, 2017; Wilkins, Nimmo-Smith, Slater, & Bedocs, 1989).
Once again, therefore, this suggests that ambient sensory phenomena do not necessarily need to be perceptible in order to affect us, adversely or otherwise. On the benefits of multisensory design:
bringing it all together One demonstration of just how dramatic the benefits of designing for multiple senses can be was reported by Kroner, Stark-Martin, and Willemain (1992) in a tech nical report.
These researchers examined the effects of an office make-over when a company moved to a new office building. The employees in the new office were given individual control of the temperature, lighting, air quality, and acoustic conditions where they were work ing.
Productivity increased by approximately 15% in the new building. When the individual control of the ambi ent multisensory environment was disabled in the new building, performance fell by around 2% instead. Trying to balance the influence of each of the senses is one of the aims of Finnish architect Juhani Pallasmaa, whose name we have come across at several points already in this text.
As Steven Holl notes in the preface to Pallas maa’s The eyes of the skin: “I have experienced the archi tecture of Juhani Pallasmaa, … The way spaces feel, the sound and smell of these places, has equal weight to the Fig. 8 The Ira Keller Fountain, Portland Oregon. According to Pallasmaa (2011), p. 596) this is “An architecture for all the senses including the kinaesthetic and olfactory senses.”
Once again, the auditory element is provided by the sound of falling water way things look.” (Pallasmaa, 1996, p. 7). One example of multisensory architectural design to which Juhani Pal lasmaa draws attention in several of his writings is the Ira Keller Fountain, Portland Oregon (see Fig. 8). On the multisensory integration of atmospheric/ environmental cues To date, only a relatively small number of studies have directly studied the influence of combined ambient/at mospheric cues on people’s perception, feelings, and/or behaviour. Mattila and Wirtz (2001) conducted one of the first sensory marketing studies to be published in this area.
These researchers manipulated the olfactory environment (no scent, a low-arousal scent (lavender), or a high-arousal scent (grapefruit)) while simultan eously manipulating the presence of music (no music, low-arousal music, or high-arousal music). When the scent and music were congruent in terms of their arousal potential, the customers rated the store envir onment more positively, exhibited higher levels of ap proach and impulse-buying behaviour, and expressed more satisfaction.
There is, though, always a very real danger of sensory overload if the combined multisen sory input becomes too stimulating (see Malhotra, 1984; Simmel, 1995). Meanwhile, in another representative field study, Sayin et al. (2015) investigated the impact of presenting ambi ent soundscapes in an underground car park in Paris. In particular, they assessed the effects of introducing west ern European birdsong or classical instrumental music by Albinoni to the three normally silent stairwells used by members of the general public when exiting the car park. A total of 77 drivers were asked about their feel ings on their way out.
Birdsong was found to work best in terms of enhancing the perceived safety of the situation- in this case by around 6%. This despite the fact that all of those who were quizzed realized that the sounds that they had heard were coming from loud speakers.12 In an accompanying series of laboratory studies, Sayin et al.’s participants were shown a 60-s first-person perspective video that had been taken in the same Paris car park, or else a short video of someone walking through a metro station in Istanbul.
Once again, participants were asked about how safe it felt, about perceived social presence, and about their willingness to purchase a monthly metro pass. Even under these some what contrived experimental conditions, the presence of an ambient soundscape once again increased perceived safety as well as the participants’ self-reported intention to purchase a season ticket.
It was, though, the sound of people singing Alleluia that proved most effective in terms of enhancing perceived safety amongst those watching the videos.13 It is, however, worth bearing in mind here that many of the key results reported in this study were only borderline significant.
As such, adequately-powered repli cation would be a good idea before too much weight is given to these intriguing findings. Recently, Ba and Kang (2019) documented crossmodal interactions between ambient sound and smell in a laboratory study that was designed to capture the sensory cues that might be encountered in a typical urban environment.
These researchers decided to pair the sounds of birds, conversation, and traffic, with the smells of flowers (lilac, osmanthus), coffee, or bread, at one of three levels (low, medium, or high) in each modality. A complex array of in teractions was observed, with increasing stimulus intensity sometimes enhancing the participants’ comfort ratings, while sometimes leading to a negative response instead. While Ba and Kang’s results defy any simple synopsis, given the complex pattern of results reported, their find ings nevertheless clearly suggest that sound and scent interact in terms of influencing people’s evaluation of urban design.
The colour of the ambient lighting in an indoor envir onment has also been shown to influence the perceived ambient temperature and thermal comfort of an envir onment (e.g., Candas & Dufour, 2005; Tsushima, et al., 2020; Winzen, Albers, & Marggraf-Micheel, 2014). For instance, in one representative study, Winzen and col leagues reported that illuminating a simulated aircraft cabin in warm yellow vs. cool blue-coloured lighting 12This response is very different from the aesthetic disappointment, or even disgust, felt by the man once hypothetically described by the philosopher Immanuel Kant who was very much enjoying listening to a nightingale’s song until realizing that he was listening to a mechanical imitation instead (Kant, 2000). 13
The owner of the car park did not like the sound of this particular sonic intervention, meaning that the researchers were unable to try it out in the field. exerted a significant influence over people’s self-reported thermal comfort. The participants rated the environment as feeling significantly warmer under the warm (as com pared to the cool) lighting colour. One can only really make sense of such findings from a multisensory per spective (see Spence, 2020a, for a review). Taken together, then, the results of the representative selection of studies reported in this section demonstrate that our perception of, and/or response to, multisensory environments are undoubtedly influenced by the com bined influence of environmental/atmospheric cues in different sensory modalities.
So, in contrast to the quote from Mattila and Wirtz (2001) that we came across a few pages ago, there is now a growing body of empirical research out there demonstrating that atmospheric cues presented in different sensory modalities, such as music, scents, and visual stimuli combine to influence how alerting, or pleasant, a particular environment, or stimulus (such as, for example, a work of art), is rated as being (e.g., Banks, Ng, & Jones-Gotman, 2012; Battacharya & Lindsen, 2016).
Sensory congruency In their book, Spaces speak, are you listening?, Blesser and Salter draw the reader’s attention to the importance of audiovisual congruency in architectural design. They write that: “Aural architecture, with its own beauty, aes thetics, and symbolism, parallels visual architecture. Vis ual and aural meanings often align and reinforce each other. For example, the visual vastness of a cathedral communicates through the eyes, while its enveloping re verberation communicates through the ears.” (Blesser & Salter, 2007, p. 3). However, they also draw attention to the incongruency that one experiences sometimes: “Al though we expect the visual and aural experience of a space to be mutually supportive, this is not always the case. Consider dining at an expensive restaurant whose decorations evoke a sense of relaxed and pampered ele gance, but whose reverberating clatter produces stress, anxiety, isolation, and psychological tension, undermin ing the possibility of easy social exchange.
The visual and aural attributes produce a conflicting response.” (Blesser & Salter, 2007, p. 3). Regardless of whether atmospheric/environmental sen sory cues are integrated or not, one general principle underpinning our response to multisensory combina tions of environmental cues is that those combinations of stimuli that are “congruent” (whatever that term means in this context) will tend to be processed more fluently, and hence be liked more, than those combina tions that are deemed incongruent, and hence will often prove more difficult, and effortful, to process (Reber, 2012; Reber, Schwarz, & Winkielman, 2004; Reber,
Winkielman, & Schwartz, 1998; Winkielman, Schwarz, Fazendeiro, & Reber, 2003; Winkielman, Ziembowicz, & Nowak, 2015).14 Indeed, it was the putative sensory incongruency between a relaxing slow-tempo music and arousing citrus scent that was put forward as a possible explanation for why Morrin and Chebat (2005) found that adding scent and sound in the setting of the shop ping mall reduced unplanned purchases as compared to either of the unisensory interventions amongst almost 800 shoppers in one North American Mall (see Fig. 9). Congruency can, of course, be defined at multiple levels. For instance, as we have seen already in this sec tion, sensory cues may be more or less congruent in terms of their arousal/relaxation potential (e.g., Hom burg, Imschloss, & Kühnl, 2012; Mattila & Wirtz, 2001). Mahvash (2007, pp. 56–57) talks about the use of con gruent cues to convey the notion of coolness: “… the Persian garden with its patterns of light and shadow, reflecting pools, gurgling fountains, scents of flowers and fruits, and gentle cool breezes 'offers an amazing rich ness of variety of sensory experiences which all serve to reinforce the pervasive sense of coolness'.” However, dif ferent sensory inputs may also be deemed congruent or not in terms of their artistic style (see Hasenfus, Martin dale, & Birnbaum, 1983; Muecke & Zach, 2007; cf. Her sey, 2000, pp. 37–41).
愛墾網 是文化創意人的窩;自2009年7月以來,一直在挺文化創意人和他們的創作、珍藏。As home to the cultural creative community, iconada.tv supports creators since July, 2009.
Added by engelbert@angku张文杰 0 Comments 71 Promotions
Posted by 馬來西亞微電影實驗室 Micro Movie Lab on February 21, 2021 at 11:00pm 7 Comments 60 Promotions
Posted by 馬來西亞微電影實驗室 Micro Movie Lab on February 18, 2021 at 5:30pm 18 Comments 73 Promotions
Posted by Host Studio on May 14, 2017 at 4:30pm 11 Comments 49 Promotions
Posted by 用心涼Coooool on July 7, 2012 at 6:30pm 39 Comments 53 Promotions
Posted by 就是冷門 on August 24, 2013 at 10:00pm 79 Comments 81 Promotions
Posted by 罗刹蜃楼 on April 6, 2020 at 11:30pm 40 Comments 66 Promotions
Posted by 葉子正绿 on April 2, 2020 at 5:00pm 77 Comments 69 Promotions
Posted by Rajang 左岸 on August 26, 2013 at 8:30am 29 Comments 61 Promotions
Posted by 來自沙巴的沙邦 on November 4, 2015 at 7:30pm 3 Comments 76 Promotions
Posted by Dokusō-tekina aidea on January 5, 2016 at 9:00pm 35 Comments 73 Promotions
Switch to the Mobile Optimized View
© 2024 Created by 馬來西亞微電影實驗室 Micro Movie Lab. Powered by
You need to be a member of Iconada.tv 愛墾 網 to add comments!
Join Iconada.tv 愛墾 網