文化有根 創意是伴 Bridging Creativity
陳明發院士·組織創造力與體驗
噱頭:字典上的定義是:1引人發笑的事;2幌子的意思,即虛假的廣告作用。
在澳大利亞國立南澳大學念博士班時,我的研究專案是“組織創造力的決定因素”。一提到這題目,有的朋友反應說:“創造力,老天決定的;這還需要探討嗎?”“創造力這東西,屬於個人才賦;怎會與組織扯上關系?”“所謂創造力,就是出點子、搞噱頭;腦袋精明就有,腦袋不精明就沒有!”
當然,知識之成體系,靠的不是“常言道“、“眾所周知”或“聖賢曾說過”,而需要嚴謹的理論基礎;也不能以抄寫幾節古詩詞,或引述某某聖賢沒有上下文的格言,引述某某加上可靠的實證過程。首先,得明確定義所探討的每個概念。這是甚麼意思呢?
身為大馬管理學院會員,我這二十年來最大的收獲,是定期讀到“大馬管理評論”。若說要了解我國的管理學研究,這份學報應該是最權威的資源了。重翻我這些年在此刊物所讀過的論文,我發現到一個有趣的現象,居然沒人做過有關“組織創造力”的實證研究。註意到沒人註意的領域;我就可能發現到沒人發現過的東西。這想法,正好測驗我到底有沒有創造力。
自然,這不是我無中生有的事物。早在昆士蘭布里斯班的格禮菲大學上碩士班時,我們便要評論杜拉克的“創新與企業家精神”。
Amabile的Social Creativity / Creativity in context 提供了有力的研究框架。
我們要發展文化創意產業,需要人文人才。我們的特色要敞開,需要人文策略。創造型人才,不是因循傳統教育模式能培養出來。
國際化的年代,人家會問你:“你來自那裏?”“你們有何特色?”特色就是由從前到現在,你有何與人不一樣?貨物如此,原產品如此,人更是如此。(陳明發 17.7.2006 體驗)
Comment
[愛墾研創·嫣然] 知識輸入與文化創意生產
知識輸入的結構、微調與文化創意生產:從機器創造力到人類文化的跨域洞見
在文化創意生產的脈絡中,創造力從來不是內發、孤立、或無中生有的活動,而是在一個多層次的「知識—規則—行動者」的系統中被集體塑造。Colton、Pease 與 Ritchie(2001)提出的「輸入知識對創造力的影響」模型,提供了重要洞見:創造行為的可變性、原創性與可信度,取決於創作者的知識輸入結構如何被建置、塑形甚至操控。
此觀點與文化創意研究中常見的三元素——物質技術基礎(resources)、社會規則場域(rules & norms)、行動者能力(agency)——高度一致。這與你所附的 INPUT–OUTPUT 模型相互印證:創作從來不是單純的個人能力或靈感,而是由「輸入條件」共同形成的。
原文指出:
「知識輸入會影響創造力,而理解創造力之前,必須先理解輸入結構的性質。」(In order to address… we first discuss the nature of the kinds of program…)
這意味著:
1 創造不是從零開始,而是在已有知識(inspiring set)中選取與再組織。
2 知識輸入並不單是「資料量」問題,而是具有深層結構:分類、權重、典範、禁忌、範式。
在人類文化中,這些知識輸入包括:
— 前人影像、故事、符碼與風格
— 社會對「可接受的創意」的規範
— 技術所允許的創作方式
— 某文化對某些形式的歷史偏好(如美學、敘事、語言)
因此,文化創作的前提並非空白的自由想像,而是「文化—技術—規範所共同提供的可用性空間」。
(二)微調(fine-tuning)與創造力的可疑性:文化與AI的共同命題
原文極具洞見地提出:
「如果一個系統被過度微調以產生特定結果,人們會質疑它的創造力。」
在 AI 領域,微調意味著:
— 資料集被刻意挑選
— 演算法被設定為偏好某類輸出
— 產出看似“巧妙”,但本質是模板化與預訓練的延伸
在文化領域,這種情況更為普遍,例如:
— 政策導向式的文化生產
— 商業化公式化的內容(如 K-pop、流量劇)
— 只複製經典風格的文創商品
— 社會規範預先決定“什麼是好作品”
過度微調的文化生產會造成:
1 創意匱乏(creativity scarcity):作品過度雷同,缺乏陌生化。
2 可預測性上升(predictability):越可預測,越不創新。
3 文化生命力降低(cultural vitality erosion):文化被框限在特定美學或敘事中。
因此,微調不只是技術議題,更是文化政治議題。
(三)創造力的可信度取決於:輸入的廣度、自由度與系統的可變性
Ritchie 的創造力框架指出三大判準(impressiveness, typicality, novelty),而這三者都直接依賴於輸入結構:
輸入越多樣,創造力越可能跨越範式。
輸入越鬆綁,創作者越能突破社會規則與典範約束。
允許輸入在規則邊界內自由組合,創造更高不可預期性。
這可與你上方的 INPUT–OUTPUT 模型對應:
| 模型構面 | 對應創造力條件 |
|---|---|
| 物質–技術資源基礎 | 決定創作的可行工具與媒材 |
| 社會規則場域 | 決定創作的可接受範圍 |
| 行動者能力基礎 | 決定創作者能否善用並突破輸入 |
換言之:創造是輸入與條件的產物,而非純粹主體意志的展現。
對文化創意政策與內容生產而言,此理論有重大啟示:
若文化只提供經典、傳統、主流,那創作便難以跨越。
過度職訓化的創作者,其想像力常被框限。
現今內容平台(如 TikTok)注重輸出格式的一致化,而非輸入環境的開放,這會削弱創新的文化力。
文化創造力是「輸入的政治」
誰決定我們看什麼?
誰決定什麼是“好”的輸入?
誰決定哪些知識可以被納入創作?
文化創造力即文化自由度。
(五)結論:創造力不是產物,而是輸入結構的生成效應
綜合 Colton、Pease 與 Ritchie 的框架,我們可提出文化創造力的核心論證:
創造力不是神秘的靈感,也不是演算法的奇蹟,而是輸入知識的架構、社會規則的邊界、以及創作者能動性的交互生成。
當輸入多元、規則鬆綁、行動者具備能力與自由時:創造力呈現出原創性與不可預測性。
當輸入單一、規則僵化、行動者被制度微調時:
創造力退化為模板化與可預期的再生產。
因此,文化創意的真正課題不是「如何創造內容」,而是:如何設計一個能夠孕育真正創造力的輸入環境。
機器創造力:創作的知識輸入~~在人工智慧、認知科學與哲學領域中,關於機器創造力的討論已經相當多。然而,直到最近,足夠數量的創意程式才真正出現,使我們能從中歸納出一些共通性。這些共通性讓我們得以提出一些方法,用以設計、運用並評估創意程式。在這個過程中,一個重要的部分便是確立一組可用來估計程式創造力的衡量指標。
在某些情況下,這些指標也許可以用來判斷某一個程式是否比另一個更具創造力。然而,此類情況必須十分特殊,並需考慮兩個程式的設計、輸入與輸出,而即便如此,這樣的比較仍很可能被認為不公平。類似地,也許可以利用創造力指標來判定某程式是否具有任何創造力,但這同樣存在問題,因為「創造力」是一個負載極重且高度主觀的詞。例如,Cohen 的 AARON 程式(Cohen 1995)被許多人視為具有創造力,但其作者本人卻不這麼認為。
因此,創造力衡量指標的價值主要在於:用於創意程式的設計,而非用於評估已既有的程式。如果我們能就一組程式創造力的衡量指標達成共識,那麼撰寫程式的人便可將其作為提高系統創造力的指引。倘若某程式的新版本在這些指標下的評價比前一版本更佳,那麼便很可能代表已有進展。
對於任何聲稱具有創造力的程式,一個重要的問題是:它的設計(包含其使用的演算法與資料)在多大程度上是被刻意安排以產生特定輸出。也就是說,程式是否被「微調」來生成特定結果?微調的證據會影響我們對它創造力的看法。例如,Lenat 的 AM 程式(Lenat 1982)之所以顯得具有創造力,其中一個原因是它最初在集合論領域工作,但後來轉向數論,而其最佳結果也來自後者。然而,當(Ritchie & Hanna 1984)顯示 AM 將「袋子(bags)」視為「數字」——這一導致它探索數論的「決定」——其實源於一些精心設計的知識時,我們願意接受 AM 為創造性的程度便因此降低。
為了探討輸入給程式的知識如何影響其創造力,我們首先討論適用於我們創造力衡量方式的程式種類,並提供一些此類程式的例子。接著,我們借用波普(Popper)的科學哲學來作為研究微調問題的理論基礎。之後,我們概述 Ritchie 先前在衡量創造力方面的工作(Ritchie 2001),並說明我們將如何在此基礎上延伸。接著,我們引入「創意集合(creative set)」的概念,並以此推導出一些與微調相關、且會影響程式創造力評估的衡量方法。最後,我們以 AM 與 HR 兩個數學理論生成程式(Lenat 1982;Colton 2001)作為案例研究。
There has been much debate about machine creativity in artificial intelligence, cognitive science and philosophy. However, only recently have sufficient numbers of creative programs become available for us derive some commonalities between them. Such commonalities allow us to suggest ways in which creative programs can be designed, utilised and assessed. An important part of this process is the determination of a set of measures which can be used to estimate the creativity of a program. Under certain circumstances, it may be possible to use such measures to determine whether one program is more creative than another.
However, the circumstances would have to be very special, taking the design, input and output of both programs into consideration, and it is still likely that such a comparison would be deemed unfair.
Similarly, it may be possible to use measures of creativity to determine whether a program is being creative at all, but this is also problematic, because creativity is such an overloaded and highly subjective word. For instance, Cohen's AARON program(Cohen1995)1 is cited as creative by many people, but is not thought of as creative by its author.
The worth of measures of creativity therefore lies in using them in the design of creative programs rather than the assessment of established programs. If we can agree upon a set of measures of creativity of programs, then someone writing a program can use these as a guideline for increas ing the creativity of the program. If a new version of the program is assessed more favourably by some of the measures than the previous version, it is likely that progress has been made.
For any program which purports to be creative, an important question is the extent to which its design (including the algorithms and data it uses) is contrived to produce partic ular outputs.
That is, has the program been `fine-tuned' to generate specific results? Evidence of fine-tuning can affect our perception of how creative a program has been. For in stance, one of the reasons that Lenat's AM program (Lenat 1982) appears creative is that it began by working in set the ory, but switched to number theory, with its best results arising in the latter domain.
However, our willingness to accept AM as creative is lowered by the evidence provided in (Ritchie & Hanna 1984) that AM's `decision' to regard bags as numbers — which led it to investigate number theory — was the result of certain carefully crafted knowledge.
In order to address the question of how the knowledge in put to a program affects its creativity, we first discuss the nature of the kinds of program to which our measures of creativity apply and give some examples of such programs.
Wethen draw on Popper's philosophy of science to motivate our investigation into fine-tuning. Following this, we give an overview of Ritchie's previous work on measuring creativity (Ritchie 2001), and discuss how we will build on these.
Wethen introduce the notion of a creative set and use this to derive some measures of fine-tuning which affect the assessment of creativity in programs. Finally, we perform a case study using the AM and HR mathematical theory formation programs (Lenat 1982), (Colton 2001).
The Effect of Input Knowledge on Creativity by Simon Colton, Alison Pease, Graeme Ritchie fr. Informatics Research Report EDI-INF-RR-0055. DIVISION of INFORMATICS, Centre for Intelligent Systems and their Applications, Institute for Communicating and Collaborative Systems November 2001, Appears in Proceedings of ICCBR-2001.
愛墾網 是文化創意人的窩;自2009年7月以來,一直在挺文化創意人和他們的創作、珍藏。As home to the cultural creative community, iconada.tv supports creators since July, 2009.
Added by engelbert@angku张文杰 0 Comments 82 Promotions
Posted by 馬來西亞微電影實驗室 Micro Movie Lab on February 21, 2021 at 11:00pm 7 Comments 70 Promotions
Posted by 馬來西亞微電影實驗室 Micro Movie Lab on February 18, 2021 at 5:30pm 18 Comments 78 Promotions
Posted by Host Studio on May 14, 2017 at 4:30pm 11 Comments 55 Promotions
Posted by 用心涼Coooool on July 7, 2012 at 6:30pm 39 Comments 59 Promotions
Posted by 就是冷門 on August 24, 2013 at 10:00pm 86 Comments 86 Promotions
Posted by 罗刹蜃楼 on April 6, 2020 at 11:30pm 40 Comments 69 Promotions
Posted by 葉子正绿 on April 2, 2020 at 5:00pm 77 Comments 75 Promotions
Posted by Rajang 左岸 on August 26, 2013 at 8:30am 29 Comments 67 Promotions
Posted by 來自沙巴的沙邦 on November 4, 2015 at 7:30pm 3 Comments 82 Promotions
Posted by Dokusō-tekina aidea on January 5, 2016 at 9:00pm 35 Comments 79 Promotions
© 2025 Created by 馬來西亞微電影實驗室 Micro Movie Lab.
Powered by
You need to be a member of Iconada.tv 愛墾 網 to add comments!
Join Iconada.tv 愛墾 網